ASTM F384-06
Historical Standard: ASTM F384-06 Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices
SUPERSEDED (see Active link, below)
ASTM F384
1. Scope
1.1 These specifications and test methods provide a comprehensive reference for angled devices used in the surgical internal fixation of the skeletal system. This standard establishes consistent methods to classify and define the geometric and performance characteristics of angled devices. This standard also presents a catalog of standard specifications that specify material, labeling, and handling requirements, and standard test methods for measuring performance related mechanical characteristics determined to be important to the in vivo performance of angled devices.
1.2 It is not the intention of this standard to define levels of performance of case-specific clinical performance for angled devices, as insufficient knowledge is available to predict the consequences of their use in individual patients for specific activities of daily living. Futhermore, this standard does not describe or specify specific designs for angled devices used in the surgical internal fixation of the skeletal system.
1.3 This standard may not be appropriate for all types of angled devices. The user is cautioned to consider the appropriateness of this standard in view of a particular angled device and its potential application.
Note 1This standard is not intended to address intramedullary hip screw nails or other angled devices without a sideplate.
1.4 This standard includes the following test methods used in determining the following angled device mechanical performance characteristics:
1.4.1 Standard test method for single cycle compression bend testing of metallic angled orthopedic fracture fixation devices (see ).
1.4.2 Standard test method for determining the bending fatigue properties of metallic angled orthopedic fracture fixation devices (see ).
1.5 Unless otherwise indicated, the values stated in SI units shall be regarded as the standard.
Note 2There is currently no ISO standard that is either similar to equivalent to this standard.
1.6 This test method describes methods for bending fatigue testing in order to determine intrinsic structural properties of metallic angled devices. The test method may be used to determine the fatigue life at a specific or over a range of maximum bending moment levels or to estimate the fatigue strength for a specified number of fatigue cycles of an angled device.
1.7 This test method is intended to provide a means to mechanically characterize different angled device designs. This test method does not define angled device performance levels since these characteristics are driven by patient-specific clinical requirements.
1.8 UnitsThe values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.
Note 3Currently, there is no ISO standard that is similar, or equivalent, to this test method.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
E4 Practices for Force Verification of Testing Machines
E8 Test Methods for Tension Testing of Metallic Materials
E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process
E467 Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing System
E1823 Terminology Relating to Fatigue and Fracture Testing
E1942 Guide for Evaluating Data Acquisition Systems Used in Cyclic Fatigue and Fracture Mechanics Testing
F67 Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700)
F75 Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS R30075)
F90 Specification for Wrought Cobalt-20Chromium-15Tungsten-10Nickel Alloy for Surgical Implant Applications (UNS R30605)
F136 Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)
F138 Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673)
F139 Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Sheet and Strip for Surgical Implants (UNS S31673)
F382 Specification and Test Method for Metallic Bone Plates
F565 Practice for Care and Handling of Orthopedic Implants and Instruments
F620 Specification for Titanium Alloy Forgings for Surgical Implants in the Alpha Plus Beta Condition
F621 Specification for Stainless Steel Forgings for Surgical Implants
F983 Practice for Permanent Marking of Orthopaedic Implant Components
F1295 Specification for Wrought Titanium-6Aluminum-7Niobium Alloy for Surgical Implant Applications (UNS R56700)
F1314 Specification for Wrought Nitrogen Strengthened 22 Chromium - 13 Nickel - 5 Manganese - 2.5 Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910)
F1472 Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNS R56400)
F1713 Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130)
Keywords
angled devices; bend testing; blade plate; compression hip screw; fatigue test; orthopedic medical devices; surgical devices; surgical implants;
ICS Code
ICS Number Code 11.040.40 (Implants for surgery, prothetics and orthotics)
DOI: 10.1520/F0384-06
ASTM International is a member of CrossRef.