Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
FORMAT
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E262-13 Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques
    Edition: 2013
    $103.58
    Unlimited Users per year

Description of ASTM-E262 2013

ASTM E262 - 13

Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

Active Standard ASTM E262 | Developed by Subcommittee: E10.05

Book of Standards Volume: 12.02




ASTM E262

Significance and Use

4.1 This test method can be extended to use any material that has the necessary nuclear and activation properties that suit the experimenter's particular situation. No attempt has been made to fully describe the myriad problems of counting techniques, neutron-fluence depression, and thick-foil self-shielding. It is assumed that the experimenter will refer to existing literature on these subjects. This test method does offer a referee technique (the standard gold foil irradiation at National Institute of Standards and Technology (NIST)) to aid the experimenter when he is in doubt of his ability to perform the radiometric technique with sufficient accuracy.

4.2 The standard comparison technique uses a set of foils that are as nearly identical as possible in shape and mass. The foils are fabricated from any material that activates by an ( n, ? ) reaction, preferably having a cross section approximately inversely proportional to neutron speed in the thermal energy range. Some of the foils are irradiated in a known neutron field (at NIST) or other standards laboratory). The foils are counted in a fixed geometry on a stable radiation-detecting instrument. The neutron induced reaction rate of the foils is computed from the counting data, and the ratio of the known neutron fluence rate to the computed reaction rate is determined. For any given foil, neutron energy spectrum, and counting set-up, this ratio is a constant. Other foils from the identical set can now be exposed to an unknown neutron field. The magnitude of the fluence rate in the unknown field can be obtained by comparing the reaction rates as determined from the counting data from the unknown and reference field, with proper corrections to account for spectral differences between the two fields (see Section 5 ). One important feature of this technique is that it eliminates the need for knowing the detector efficiency.

4.3 This test method follows the Stoughton and Halperin convention for reporting thermal neutron fluence. Other conventions are the Wescott convention (followed in Test Method E481 ) and the Hogdahl convention. Practice E261 explains the three conventions and gives conversion formulae relating values determined by the different conventions. Reference ( 1 ) 3 discusses the three thermal-neutron conventions in detail.

1. Scope

1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques.

1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy.

1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and

1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy.

1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-temperature environments are discussed in 9.2 . For those circumstances where the use of cadmium as a thermal shield is undesirable because of potential spectrum perturbations or of temperatures above the melting point of cadmium, the method described in Test Method E481 can be used in some cases. Alternatively, gadolinium filters may be used instead of cadmium. For high temperature applications in which aluminum alloys are unsuitable, other alloys such as cobalt-nickel or cobalt-vanadium have been used.

1.3 This test method may be used to determine the equivalent 2200 m/s fluence rate. The accurate determination of the actual thermal neutron fluence rate requires knowledge of the neutron temperature, and determination of the neutron temperature is not within the scope of the standard.

1.4 The techniques presented are suitable only for neutron fields having a significant thermal neutron component, in which moderating materials are present, and for which the average scattering cross section is large compared to the average absorption cross section in the thermal neutron energy range.

1.5 Table 1 indicates the useful neutron-fluence ranges for each detector material.

TABLE 1 Useful Neutron Fluence Ranges of Foil Material

Foil Material

Form

? Useful Range (neutrons/cm 2 )

Indium

pure or alloyed with aluminum

10 3 to 10 12

Gold

pure or alloyed with aluminum

10 7 to 10 14

Dysprosium

pure or alloyed with aluminum

10 3 to 10 10

Cobalt

pure or alloyed with aluminum

10 14 to 10 20


1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

E170 Terminology Relating to Radiation Measurements and Dosimetry

E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

E181 Test Methods for Detector Calibration and Analysis of Radionuclides

E261 Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques

E481 Test Method for Measuring Neutron Fluence Rates by Radioactivation of Cobalt and Silver


Keywords


ICS Code

ICS Number Code 17.240 (Radiation measurements); 27.120.30 (Fissile materials and nuclear fuel technology)


DOI: 10.1520/E0262-13

ASTM International is a member of CrossRef.

ASTM E262

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,164.67 Buy
VAR
ASTM
[+] $1,737.94 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

GROUPS