FORMAT
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E2257 2024ASTM E2257-24Redline Standard: Standard Test Method for Room Fire Test of Wall and Ceiling Materials and AssembliesASTM E2257Scope 1.1 This is a fire-test-response standard. 1.2 This test method is intended to evaluate, under specified fire-exposure conditions, the contribution to room fire growth provided by wall or ceiling materials and assemblies, or both. The method is not intended to evaluate the fire endurance of assemblies or fires originating in the wall assembly. The method provides a means to evaluate the effectiveness of thermal barriers in restricting the contribution of combustible materials in the wall assembly to fire growth in a room fire. 1.3 This test method, simulating a fire in the corner of a 2420 mm by 3630 mm (8 ft by 12 ft) room containing a single open doorway, provides a means to evaluate the relative performance of specified wall and ceiling materials or assemblies when they are used together in the same relationship within an enclosure, and simulating the manner in which they will be used. 1.4 This test method is intended to evaluate the contribution to fire growth provided by a surface product using a specified ignition source. It shall, however, be noted that the type, position and heat output of the ignition source will considerably influence fire growth. The thermal exposure conditions from the ignition source specified in this method will result in flashover during the 20 min duration for many common finish materials, in particular if specimens are mounted on the walls and the ceiling (standard configuration). 1.5 This test method provides a means for evaluating wall and ceiling finish materials and assemblies, including panels, tiles, boards, sprayed or brushed coatings, etc. This test method is not intended to evaluate flooring materials or furnishings. 1.6 This method shall be used in conjunction with Guide E603, which covers instrumentation and the general effect of various parameters, and Guide E2067, which deals with full-scale oxygen consumption calorimetry. 1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. 1.8 The text of this standard references notes and footnotes which provide explanatory information. These notes and footnotes (excluding those in figures) shall not be considered as requirements of the standard. 1.9 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.11 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests. 1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords carbon dioxide; carbon monoxide; corner; fire; fire-test response; flame; heat release; heat release rate; ignition; optical density; oxygen consumption calorimetry; room; smoke obscuration; toxic gases; ICS Code ICS Number Code 13.220.50 (Fire-resistance of building materials and elements) DOI: 10.1520/E2257-24 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|