Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
FORMAT
EDITION
to
PUBLISHER
(1)
(326)
(573)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(541)
(117)
(33)
(20)
(19)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(240)
(16)
(5)
(1621)
(16)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E1249-10 Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources
    Edition: 2010
    $103.58
    Unlimited Users per year

Description of ASTM-E1249 2010

ASTM E1249 - 10

Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources

Active Standard ASTM E1249 | Developed by Subcommittee: E10.07

Book of Standards Volume: 12.02




ASTM E1249

Significance and Use

Division of the Co-60 Hardness Testing into Five Parts :

The equilibrium absorbed dose shall be measured with a dosimeter, such as a TLD, located adjacent to the device under test. Alternatively, a dosimeter may be irradiated in the position of the device before or after irradiation of the device.

This absorbed dose measured by the dosimeter shall be converted to the equilibrium absorbed dose in the material of interest within the critical region within the device under test, for example the SiO 2 gate oxide of an MOS device.

A correction for absorbed-dose enhancement effects shall be considered. This correction is dependent upon the photon energy that strikes the device under test.

A correlation should be made between the absorbed dose in the critical region (for example, the gate oxide mentioned in 4.1.2) and some electrically important effect (such as charge trapped at the Si/SiO 2 interface as manifested by a shift in threshold voltage).

An extrapolation should then be made from the results of the test to the results that would be expected for the device under test under actual operating conditions.

1. Scope

1.1 This practice covers recommended procedures for the use of dosimeters, such as thermoluminescent dosimeters (TLD's), to determine the absorbed dose in a region of interest within an electronic device irradiated using a Co-60 source. Co-60 sources are commonly used for the absorbed dose testing of silicon electronic devices.

Note 1This absorbed-dose testing is sometimes called total dose testing to distinguish it from dose rate testing.

Note 2The effects of ionizing radiation on some types of electronic devices may depend on both the absorbed dose and the absorbed dose rate; that is, the effects may be different if the device is irradiated to the same absorbed-dose level at different absorbed-dose rates. Absorbed-dose rate effects are not covered in this practice but should be considered in radiation hardness testing.

1.2 The principal potential error for the measurement of absorbed dose in electronic devices arises from non-equilibrium energy deposition effects in the vicinity of material interfaces.

1.3 Information is given about absorbed-dose enhancement effects in the vicinity of material interfaces. The sensitivity of such effects to low energy components in the Co-60 photon energy spectrum is emphasized.

1.4 A brief description is given of typical Co-60 sources with special emphasis on the presence of low energy components in the photon energy spectrum output from such sources.

1.5 Procedures are given for minimizing the low energy components of the photon energy spectrum from Co-60 sources, using filtration. The use of a filter box to achieve such filtration is recommended.

1.6 Information is given on absorbed-dose enhancement effects that are dependent on the device orientation with respect to the Co-60 source.

1.7 The use of spectrum filtration and appropriate device orientation provides a radiation environment whereby the absorbed dose in the sensitive region of an electronic device can be calculated within defined error limits without detailed knowledge of either the device structure or of the photon energy spectrum of the source, and hence, without knowing the details of the absorbed-dose enhancement effects.

1.8 The recommendations of this practice are primarily applicable to piece-part testing of electronic devices. Electronic circuit board and electronic system testing may introduce problems that are not adequately treated by the methods recommended here.

1.9 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

E170 Terminology Relating to Radiation Measurements and Dosimetry

E666 Practice for Calculating Absorbed Dose From Gamma or X Radiation

E668 Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices

E1250 Test Method for Application of Ionization Chambers to Assess the Low Energy Gamma Component of Cobalt-60 Irradiators Used in Radiation-Hardness Testing of Silicon Electronic Devices

International Commission on Radiation Units and Measurements Reports

ICRUReport18 Specification of High Activity Gamma-Ray Sources

Keywords

absorbed dose; Co-60 irradiation; dose enhancement; radiation hardness testing; Absorbed radiation dose; Cobalt-60 radiography; Dose enhancement; Dosimetry; Electrical conductors (semiconductors); Electronic hardness; Electronic materials/applications; Gamma radiation--electronic components/devices; Irradiance/irradiation--semiconductors; Photon energy spectrum; Radiation exposure--nuclear materials/applications; Radiation-hardness testing; Silicon semiconductors; Thermoluminescent dosimeter (TLD);


ICS Code

ICS Number Code 17.240 (Radiation measurements)


DOI: 10.1520/E1249-10

ASTM International is a member of CrossRef.

ASTM E1249

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,164.67 Buy
VAR
ASTM
[+] $1,737.94 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

GROUPS