Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
FORMAT
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D8551-24 Standard Practices for Permanent Monitoring Systems for Electrical Leak Detection and Location
    Edition: 2024
    $78.62
    Unlimited Users per year

Description of ASTM-D8551 2024

ASTM D8551-24

Active Standard: Standard Practices for Permanent Monitoring Systems for Electrical Leak Detection and Location




ASTM D8551

Scope

1.1 These practices describe standard procedures for using electrical methods to locate leaks in geomembranes covered with liquid, earthen materials, waste, and/or any material deposited on the geomembrane.

1.2 These practices are intended to ensure that permanent leak detection and location systems are effective, which can result in complete containment (no leaks in the geomembrane).

1.3 Not all sites will be easily amenable to this method, but some preparation can be performed in order to enable this method at nearly any site as outlined in Section 6. If ideal testing conditions cannot be achieved (or designed out), the method can still be performed, but any issues with site conditions must be documented.

1.4 Permanent monitoring systems for electrical leak detection and location can be used on geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, and other containment facilities including civil engineering structures. The procedures are applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other sufficiently electrically insulating materials.

1.5 Any permanent electrical monitoring system must detect the occurrence of a leak through the geomembrane, and it must last longer than the monitored geomembrane by nature of the concept. Therefore, all buried components and mechanical and electrical connections must be made of material either the same as the geomembrane, in case of sensors situated above geomembrane, or made from a material with a longer lifespan in cases where they are situated under the monitored geomembrane.

1.6 Permanent electrical monitoring systems are comprised of either large mesh pads separated by nominal spaces, or a grid of sensors situated either below the geomembrane or above the geomembrane or in both positions (below and above the geomembrane). In specific cases, sensors may be situated only at the perimeter of the monitored lined facility.

1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.8 The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures should be taken to protect the leak location operators, as well as other people at the site.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

construction quality assurance; electrical leak location measurement; geoelectric leak location; geomembrane; leak detection; leak location; permanent monitoring system;


ICS Code

ICS Number Code n/a


DOI: 10.1520/D8551-24

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $696.18 Buy
VAR
ASTM
[+] $10,801.41 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

GROUPS