FORMAT
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D8101/D8101M 2017ASTM D8101/D8101M-17Historical Standard: Standard Test Method for Measuring the Penetration Resistance of Composite Materials to Impact by a Blunt ProjectileASTM D8101/D8101MScope 1.1 This test method measures the resistance of flat composite panels in one specific clamping configuration to penetration by a blunt projectile in free flight. In this test method, the term “penetration” is defined as the case in which the projectile travels completely through the composite panel and fully exits the back side. The composite materials may be continuous fiber angle-ply, woven or braided fiber-reinforced polymer matrix composites, or chopped fiber-reinforced composites. The resistance to penetration is quantified by a statistical function that defines the probability of penetration for a given kinetic energy. 1.2 This test method is intended for composite test panels in which the thickness dimension is small compared with the test panel width and length (span to thickness greater than fifty). 1.3 This test method is intended for applications such as jet engine fan containment, open rotor engine blade containment, or other applications in which protection is needed for projectiles at velocities typically lower than seen in ballistic armor applications. The typical impact velocity that this test is intended for is in the range of 100 to 500 m/s [300 to 1500 ft/s], as opposed to higher velocities associated with armor penetration. 1.4 A flat composite panel is fixed between a circular-shaped clamping fixture and a large base fixture each with a large coaxial hole defining a region of the panel that is subjected to impact in the direction normal to the plane of the flat panel by a blunt projectile. Clamping pressure is provided by twenty-eight through bolts that pass through the front clamp, the test specimen and the back plate. The mass, geometry, desired impact kinetic energy, and impact orientation of the projectile with respect to the panel are specified before the test. Equipment and procedures are required for measuring the actual impact velocity and orientation during the test. The impact penetration resistance can be quantified by either the velocity or kinetic energy required for the projectile to penetrate the test panel fully. A number of tests are required to obtain a statistical probability of penetration for given impact conditions. 1.5 This test method measures the penetration resistance for a specific projectile and test configuration and can be used to screen materials for impact penetration resistance, compare the impact penetration resistance of different composite materials under the same test geometry conditions, or assess the effects of in-service or environmental exposure on the impact penetration resistance of materials. 1.6 The impact penetration resistance is highly dependent on the test panel materials and architecture, projectile geometry and mass, and panel boundary conditions. Results are not generally scalable to other configurations but, for the same test configurations, may be used to assess the relative impact penetration resistance of different materials and fiber architectures. 1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Within the text, the inch-pound units are shown in brackets. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords composite materials; impact testing; penetration resistance; ICS Code ICS Number Code 49.025.40 (Rubber and plastics) DOI: 10.1520/D8101_D8101M-17 The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|