FORMAT
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D7653 2010ASTM D7653 - 10Standard Test Method for Determination of Trace Gaseous Contaminants in Hydrogen Fuel by Fourier Transform Infrared (FTIR) SpectroscopyActive Standard ASTM D7653 | Developed by Subcommittee: D03.14 Book of Standards Volume: 05.06 ASTM D7653Significance and Use Fuel cell users have implicated trace impurities in feed gases as compromising the performance and lifespan of proton exchange membrane fuel cells (PEMFCs). PEMFCs may be damaged by the presence of some contaminants through poisoning of fuel cell electrode materials therefore detection of these impurities at low concentrations is critical to fuel cell manufacturers and feed gas suppliers in order to support the facilities and infrastructure required for widespread applicability of fuel cells in transportation and energy production. With field-portable equipment, this test method can be used to quickly analyze hydrogen fuel for impurities at vehicle fueling stations or storage tanks used to supply stationary power plants. This test method can also be used by gas suppliers, customers and regulatory agencies to certify hydrogen fuel quality. Users include hydrogen producers, gaseous fuel custody transfer stakeholders, fueling stations, fuel cell manufacturers, automotive manufacturers, regulators, and stationary fuel cell power plant operators. 1. Scope 1.1 This test method employs an FTIR gas analysis system for the determination of trace impurities in gaseous hydrogen fuels relative to the hydrogen fuel quality limits described in SAE TIR J2719 (April 2008) or in hydrogen fuel quality standards from other governing bodies. This FTIR method is used to quantify gas phase concentrations of multiple target contaminants in hydrogen fuel either directly at the fueling station or on an extracted sample that is sent to be analyzed elsewhere. Multiple contaminants can be measured simultaneously as long as they are in the gaseous phase and absorb in the infrared wavelength region. The detection limits as well as specific target contaminants for this standard were selected based upon those set forth in SAE TIR J2719. 1.2 This test method allows the tester to determine which specific contaminants for hydrogen fuel impurities that are in the gaseous phase and are active infrared absorbers which meet or exceed the detection limits set by SAE TIR J2719 for their particular FTIR instrument. Specific target contaminants include, but are not limited to, ammonia, carbon monoxide, carbon dioxide, formaldehyde, formic acid, methane, ethane, ethylene, propane and water. This test method may be extended to other impurities provided that they are in the gaseous phase or can be vaporized and are active infrared absorbers. 1.3 This test method is intended for analysis of hydrogen fuels used for fuel cell feed gases or for internal combustion engine fuels. This method may also be extended to the analysis of high purity hydrogen gas used for other applications including industrial applications, provided that target impurities and required limits are also identified. 1.4 This test method can be used to analyze hydrogen fuel sampled directly at the point-of-use from fueling station nozzles or other feed gas sources. The sampling apparatus includes a pressure regulator and metering valve to provide an appropriate gas stream for direct analysis by the FTIR spectrometer. 1.5 This test method can also be used to analyze samples captured in storage vessels from point-of-use or other sources. Analysis of the stored samples can be performed either in a mobile laboratory near the sample source or in a standard analytical laboratory. 1.6 A test plan should be prepared that includes (1) the specific impurity species to be measured, (2) the concentration limits for each impurity species, (3) the determination of the minimum detectable concentration for each impurity species as measured on the apparatus before testing. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7.1 Exception All values are based upon common terms used in the industry of those particular values and when not consistent with SI units, the appropriate SI unit will be included in parenthesis after the common value usage. (4.4, 7.8, 7.9, 10.5, and 11.6) 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards D5287 Practice for Automatic Sampling of Gaseous Fuels D6348 Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy D7606 Practice for Sampling of High Pressure Hydrogen and Related Fuel Cell Feed Gases SAE Document SAETIRJ2719 Informational Report on the Development of a Hydrogen Quality Guideline for Fuel Cell VehiclesEPA Documents EPA40CFRProtectionof Performance Specification for Extractive FTIR Continuous Emissions Monitoring Systems in Stationary SourcesOther Document FourierTransf Peter R. Griffiths and James A. de Haseth, John Wiley and Son, 2007.Keywords Fourier Transform infrared spectroscopy; FTIR; fuel cell; hydrogen fuel; hydrogen gas; impurity detection; ICS Code ICS Number Code 71.100.20 (Gases for industrial application) DOI: 10.1520/D7653-10 ASTM International is a member of CrossRef. ASTM D7653The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|