FORMAT
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6484 2009ASTM D6484 / D6484M - 09Standard Test Method for Open-Hole Compressive Strength of Polymer Matrix Composite LaminatesActive Standard ASTM D6484 / D6484M | Developed by Subcommittee: D30.05 Book of Standards Volume: 15.03 ASTM D6484 / D6484MSignificance and Use This test method is designed to produce notched compressive strength data for structural design allowables, material specifications, research and development, and quality assurance. Factors that influence the notched compressive strength and shall therefore be reported include the following: material, methods of material fabrication, accuracy of lay-up, laminate stacking sequence and overall thickness, specimen geometry, (including hole diameter, diameter-to-thickness ratio, and width-to-diameter ratio), specimen preparation (especially of the hole), specimen conditioning, environment of testing, specimen alignment and gripping, loading procedure, speed of testing, time at temperature, void content, and volume percent reinforcement. Properties that may be derived from this test method include open-hole (notched) compressive strength (OHC). 1. Scope 1.1 This test method determines the open-hole compressive strength of multidirectional polymer matrix composite laminates reinforced by high-modulus fibers. The composite material forms are limited to continuous-fiber or discontinuous-fiber (tape or fabric, or both) reinforced composites in which the laminate is balanced and symmetric with respect to the test direction. The range of acceptable test laminates and thicknesses are described in 8.2.1. 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards D792 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D883 Terminology Relating to Plastics D2584 Test Method for Ignition Loss of Cured Reinforced Resins D2734 Test Methods for Void Content of Reinforced Plastics D3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials D3171 Test Methods for Constituent Content of Composite Materials D3878 Terminology for Composite Materials D5229/D5229M Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials D5687/D5687M Guide for Preparation of Flat Composite Panels with Processing Guidelines for Specimen Preparation E4 Practices for Force Verification of Testing Machines E6 Terminology Relating to Methods of Mechanical Testing E83 Practice for Verification and Classification of Extensometer Systems E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods E456 Terminology Relating to Quality and Statistics E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method E1309 Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases E1434 Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in Databases E1471 Guide for Identification of Fibers, Fillers, and Core Materials in Computerized Material Property Databases Keywords composite materials; compression testing; open-hole compressive strength; Compressive modulus of elasticity; Continuous fiber-reinforced composites; Discontinuous fiber-reinforced composites; High modulus fibrous composites; Laminates; Modulus of elasticity; Multi-directional polymer matrix composite laminates; Open-hole compressive strength; Polymers (composites); Resins (composite); Composites; Compression testing--composites; ICS Code ICS Number Code 83.120 (Reinforced plastics) DOI: 10.1520/D6484_D6484M-09 ASTM International is a member of CrossRef. ASTM D6484 / D6484MThe following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|