Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
FORMAT
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    D6168-97e1 Standard Guide for Selection of the Minimum Set of Data Elements Required to Identify Locations Chosen for the Field Collection of Information to Describe Soil, Rock, and Their Contained Fluids
    Edition: 1997
    $93.60
    Unlimited Users per year

Description of ASTM-D6168 1997

ASTM D6168-97e1

Historical Standard: ASTM D6168-97e1 Standard Guide for Selection of the Minimum Set of Data Elements Required to Identify Locations Chosen for the Field Collection of Information to Describe Soil, Rock, and Their Contained Fluids

SUPERSEDED (see Active link, below)




ASTM D6168

1. Scope

1.1 This guide covers factors to consider for the selection of the minimum set of data elements required for the accurate location and cataloging of information collected for geological science (geoscience) investigations, which includes geoecology.
1.1.1 Geoscience investigations include soil surveys, foundation investigations, geologic studies, hydrologic evaluations, environmental appraisals, contamination inquiries, archaeological surveys, and other studies that involve the soil, rock, and contained fluids from the lands surface to any explored depth underground.

1.2 A unique geoscience data location, on or below the earth's surface, can be described by X, Y, and Z coordinates and by that method establish the dimensional relationship to data of a similar nature. Additional location information needed depends upon the type of geoscience data collection locality.
1.2.1 The basic type is a single position described by finite X, Y, and Z coordinates. The X, Y, and Z coordinates uniquely position the location on or below the earth's surface.


Note 1-An example is the latitude and longitude in horizontal coordinates and the altitude (or elevation) in vertical distance of a ground-water location or site. Data collected at the site, for example, water levels, are measured by the vertical interval as referenced to the altitude.
1.2.2 Another type of location is described by finite X and Y coordinates that has multiple vertically positioned Z coordinates. This is equivalent to the location type described in 1.2.1, except that mulitple vertical dimensions are stated as Z coordinates, rather than vertical intervals.
Note 2-An example of latitude, longitude, and multiple altitudes of a soil sampling location or site. Each altitude represents a different sampling position that has the same latitude and longitude coordinate. The upper and lower limit of a sampling interval can be expressed by altitudes.
1.2.3 Another type is a location described by finite X and Y coordinates with multiple Z coordinates that are not vertically oriented from X and Y coordinates.
Note 3-An example is a slanted borehole where the top is at a different latitude and longitude coordinate than the sampling positions in the hole. Methods of describing these sampling points are: treat each position as a separate location with finite latitude, longitude, and altitude values; describe the horizontal deviation of the sampling point from the finite latitude and longitude coordinates at the top of the borehole.
1.2.4 Another type is a location with considerable horizontal dimension that cannot be described by a finite X and Y coordinate, however, a single Z coordinated may be acceptable.
Note 4-Examples are sinkholes, waste disposal pits, septic systems, underground injection facilities, mines, archaelogical sites, and some ponds or lakes. These locations can be described by including additional information that gives the horizontal components of the location along with the latitude, longitude, and altitude coordinates or by multiple sets of X and Y coordinates that encompass the location.

1.3 Additional key data elements are needed to simplify the identification and cataloging of the geoscience data.
1.3.1 These elements describe political entities, data sources, and individual characteristics of the location.
Note 5-The data assist in file organization by placing the information into logical categories and to further identify the geoscience location by use of familiar terminology. A carefully designed minimum set of data elements contributes to the recoverability and the future value of the entire data file.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word 'Standard' in the title of this document means only that the document has been approved through the ASTM consensus process.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D420 Guide to Site Characterization for Engineering Design and Construction Purposes

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

D2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)

D2607 Classification of Peats, Mosses, Humus, and Related Products

D3282 Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes

D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

D4083 Practice for Description of Frozen Soils (Visual-Manual Procedure)

D4220 Practices for Preserving and Transporting Soil Samples

D4427 Classification of Peat Samples by Laboratory Testing

D4448 Guide for Sampling Ground-Water Monitoring Wells

D4700 Guide for Soil Sampling from the Vadose Zone

D4879 Guide for Geotechnical Mapping of Large Underground Openings in Rock

D5092 Practice for Design and Installation of Ground Water Monitoring Wells

D5254 Practice for Minimum Set of Data Elements to Identify a Ground-Water Site

D5299 Guide for Decommissioning of Groundwater Wells, Vadose Zone Monitoring Devices, Boreholes, and Other Devices for Environmental Activities

D5408 Guide for Set of Data Elements to Describe a Groundwater Site; Part One--Additional Identification Descriptors

D5409 Guide for Set of Data Elements to Describe a Ground-Water Site; Part Two--Physical Descriptors

D5410 Guide for Set of Data Elements to Describe a Ground-Water Site;Part Three--Usage Descriptors

D5434 Guide for Field Logging of Subsurface Explorations of Soil and Rock

D5474 Guide for Selection of Data Elements for Groundwater Investigations

D5911 Practice for Minimum Set of Data Elements to Identify a Soil Sampling Site


Keywords

coordinates; geoscience investigation; geoscience location; key data elements; rock; soil; underground fluids: Data elements; Field investigations; Field testing--rock; Field testing--soil; Geophysical investigations/geophysics; Minimum requirements; Rock materials/properties/analysis; Site identification/investigation/selection; Soil; Statistical methods--ground water analysis; Underground fluids ;


ICS Code

ICS Number Code 13.080.01 (Soil quality in general)


DOI: 10.1520/D6168-97E01

ASTM International is a member of CrossRef.


This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,235.20 Buy
VAR
ASTM
[+] $10,801.41 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

GROUPS