Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
FORMAT
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94624)
(54)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D4684-14 Standard Test Method for Determination of Yield Stress and Apparent Viscosity of Engine Oils at Low Temperature
    Edition: 2014
    $113.57
    Unlimited Users per year

Description of ASTM-D4684 2014

ASTM D4684-14

Historical Standard: Standard Test Method for Determination of Yield Stress and Apparent Viscosity of Engine Oils at Low Temperature




ASTM D4684

Scope

1.1 This test method covers the measurement of the yield stress and viscosity of engine oils after cooling at controlled rates over a period exceeding 45 h to a final test temperature between –10 °C and –40 °C. The precision is stated for test temperatures from –40 °C to –15 °C. The viscosity measurements are made at a shear stress of 525 Pa over a shear rate of 0.4 s–1to 15 s–1. The viscosity as measured at this shear stress was found to produce the best correlation between the temperature at which the viscosity reached a critical value and borderline pumping failure temperature in engines.

1.2 This test method contain two procedures: Procedure A incorporates several equipment and procedural modifications from Test Method D4684–02 that have shown to improve the precision of the test, while Procedure B is unchanged from Test Method D4684–02. Additionally, Procedure A applies to those instruments that utilize thermoelectric cooling technology or direct refrigeration technology of recent manufacture for instrument temperature control. Procedure B can use the same instruments used in Procedure A or those cooled by circulating methanol.

1.3 Procedure A of this test method has precision stated for a yield range from less than 35 Pa to 210 Pa and apparent viscosity range from 4300 mPa·s to 270 000 mPa·s. The test procedure can determine higher yield stress and viscosity levels.

1.4 This test method is applicable for unused oils, sometimes referred to as fresh oils, designed for both light duty and heavy duty engine applications. It also has been shown to be suitable for used diesel and gasoline engine oils. The applicability to petroleum products other than engine oils has not been determined.

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5.1 Exception—This test method uses the SI based unit of milliPascal second (mPa·s) for viscosity which is equivalent to, centiPoise (cP).

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


Keywords

low temperature flow properties; low temperature viscosity; mini-rotary viscometer; pumping viscosity; used diesel engine oil; viscosity; yield stress


ICS Code

ICS Number Code 75.100 (Lubricants, industrial oils and related products)


DOI: 10.1520/D4684-14

The following editions for this book are also available...

Format Year Publisher Type Title Annual Price
2008
ASTM
Model Standard
$113.57 Buy
2020
ASTM
Model Standard
$113.57 Buy
2020
ASTM
Model Standard
$94.85 Buy
2007
ASTM
Model Standard
$113.57 Buy
2007
ASTM
Model Standard
$113.57 Buy
2002
ASTM
Model Standard
$103.58 Buy
2002
ASTM
Model Standard
$103.58 Buy
1999
ASTM
Model Standard
$103.58 Buy
2017
ASTM
Model Standard
$113.57 Buy
2017
ASTM
Model Standard
$113.57 Buy
2012
ASTM
Model Standard
$113.57 Buy
2018
ASTM
Model Standard
$113.57 Buy
2020
ASTM
Model Standard
$113.57 Buy

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,385.31 Buy
VAR
ASTM
[+] $5,835.44 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

GROUPS