Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
FORMAT
EDITION
to
PUBLISHER
(1)
(337)
(585)
(54)
(234)
(996)
(657)
(2154)
(117)
(94398)
(54)
(560)
(124)
(33)
(21)
(20)
(94146)
(3)
(17)
(1)
(374)
(309)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1617-09 Standard Practice for Quantitative Accelerated Laboratory Evaluation of Extraction Solutions Containing Ions Leached from Thermal Insulation on Aqueous Corrosion of Metals
    Edition: 2009
    $103.58
    Unlimited Users per year

Description of ASTM-C1617 2009

ASTM C1617 - 09

Standard Practice for Quantitative Accelerated Laboratory Evaluation of Extraction Solutions Containing Ions Leached from Thermal Insulation on Aqueous Corrosion of Metals

Active Standard ASTM C1617 | Developed by Subcommittee: C16.31

Book of Standards Volume: 04.06




ASTM C1617

Significance and Use

Corrosion associated with insulation is an important concern for insulation manufacturers, specification writers, designers, contractors, users and operators of the equipment. Some material specifications contain test methods (or reference test methods contained in other material specifications), for use in evaluating the insulation with regard to the corrosion of steel, copper, and aluminum. In some cases these tests are not applicable or effective and have not been evaluated for precision and bias.

A properly selected, installed, and maintained insulation system will reduce the corrosion that often occurs on an un-insulated structure. However, when the protective weather-resistant covering of an insulation system fails, the conditions for the aqueous environment necessary for corrosion under insulation (CUI) often develop. It is possible the insulation contains, collects, or concentrates corrosive agents, or a combination thereof, often found in industrial and coastal environments. If water is not present, these electrolytes cannot migrate to the metal surface. The electrochemical reaction resulting in the aqueous corrosion of metal surfaces cannot take place in the absence of water and electrolytes. Additional environmental factors contributing to increased corrosion rates are oxygen, and elevated-temperature (near boiling point).

Chlorides and other corrosive ions are common to many environments. The primary corrosion preventative is to protect insulation and metal from contamination and moisture. Insulation covers, jackets, and metal coating of various kinds are often used to prevent water infiltration and contact with the metal.

This procedure can be used to evaluate all types of thermal insulation and fireproofing materials (industrial, commercial, residential, cryogenic, fire-resistive, insulating cement) manufactured using inorganic or organic materials.

This procedure can be used with all metal types for which a coupon can be prepared such as mild steel, stainless steel, copper, or aluminum.

This procedure can also be applicable to insulation accessories including jacketing, covers, adhesives, cements, and binders associated with insulation and insulation products.

Heat treatment of the insulation (as recommended by the manufacturer up to the maximum potential exposure temperature) can be used to simulate possible conditions of use.

Adhesives can be tested by first drying followed by water extraction or by applying a known quantity of the test adhesive to a test piece of insulation and then extracting.

Insulating cements can be tested by casting a slab, drying, and extracting or by using the uncured insulating cement powder for extraction.

Reference tests prepared with various concentrations of solutions that are conducive to the corrosion of the tested metal serve as comparative standards. Solutions containing chloride, sodium hydroxide, various acids (sulfuric, hydrochloric, nitric, and citric acid), as well as blank tests using only de-ionized water and tap water are used.

Research can be done on insulation that has been specially formulated to inhibit corrosion in the presence of corrosive ions through modifications in basic composition or incorporation of certain chemical additives. Corrosive ions can also be added to the insulation extraction solutions to determine the effectiveness of any inhibitors present.

Protective surface treatments and coatings of different types and thickness can be applied to the metal coupons and compared using various corrosive liquids.

Several sets of tests are recommended because of the number of factors that affect corrosion. An average of the tests and the standard deviation between the test results are used on the data. Much of the corrosion literature recommends a minimum of three specimens for every test. Consult Guide G16 for additional statistical methods to apply to the corrosion data.

Results from this accelerated corrosion test shall not be considered as an indicator of the useful life of the metal equipment. Many factors need consideration for applicability to specific circumstances. Refer to Practice G31 for additional information.

1. Scope

1.1 This practice covers procedures for a quantitative accelerated laboratory evaluation of the influence of extraction solutions containing ions leached from thermal insulation on the aqueous corrosion of metals. The primary intent of the practice is for use with thermal insulation and associated materials that contribute to, or alternatively inhibit, the aqueous corrosion of different types and grades of metals due to soluble ions that are leached by water from within the insulation. The quantitative evaluation criteria are Mass Loss Corrosion Rate (MLCR) expressed in mils per year determined from the weight loss due to corrosion of exposed metal coupons after they are cleaned.

1.2 The insulation extraction solutions prepared for use in the test can be altered by the addition of corrosive ions to the solutions to simulate contamination from an external source. Ions expected to provide corrosion inhibition can be added to investigate their inhibitory effect.

1.3 Prepared laboratory standard solutions are used as reference solutions and controls, to provide a means of calibration and comparison. See Fig. 1 and Table 1.

1.4 Other liquids can be tested for their potential corrosiveness including cooling tower water, boiler feed, and chemical stocks. Added chemical inhibitors or protective coatings applied to the metal can also be evaluated using the general guidelines of the practice.

1.5 This practice cannot cover all possible field conditions that contribute to aqueous corrosion. The intent is to provide an accelerated means to obtain a non-subjective numeric value for judging the potential contribution to the corrosion of metals that can come from ions contained in thermal insulation materials or other experimental solutions. The calculated numeric value is the mass loss corrosion rate. This calculation is based on general corrosion spread equally over the test duration and the exposed area of the experimental cells created for the test. Corrosion found in field situations and this accelerated test also involves pitting and edge effects and the rate changes over time.

1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

A53/A53M Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

A105/A105M Specification for Carbon Steel Forgings for Piping Applications

C168 Terminology Relating to Thermal Insulation

C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus

C665 Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

C692 Test Method for Evaluating the Influence of Thermal Insulations on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel

C739 Specification for Cellulosic Fiber Loose-Fill Thermal Insulation

C795 Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel

C871 Test Methods for Chemical Analysis of Thermal Insulation Materials for Leachable Chloride, Fluoride, Silicate, and Sodium Ions

D609 Practice for Preparation of Cold-Rolled Steel Panels for Testing Paint, Varnish, Conversion Coatings, and Related Coating Products

G1 Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens

G16 Guide for Applying Statistics to Analysis of Corrosion Data

G31 Guide for Laboratory Immersion Corrosion Testing of Metals

G46 Guide for Examination and Evaluation of Pitting Corrosion


Keywords

chloride; corrosion; corrosion under insulation; inhibition; metal; protective coatings; steel; thermal insulation; Aqueous corrosion testing; Corrosion; Corrosion under insulation; Inhibitors; Mass loss corrosion rate (MLCR); Soluble chloride ion; Thermal insulation;


ICS Code

ICS Number Code 77.060 (Corrosion of metals)


DOI: 10.1520/C1617-09

ASTM International is a member of CrossRef.

ASTM C1617

The following editions for this book are also available...

Format Year Publisher Type Title Annual Price
2005
ASTM
Model Standard
$103.58 Buy
2019
ASTM
Model Standard
$113.57 Buy
2018
ASTM
Model Standard
$113.57 Buy
2018
ASTM
Model Standard
$113.57 Buy
2015
ASTM
Model Standard
$113.57 Buy
2024
ASTM
Model Standard
$94.85 Buy
2024
ASTM
Model Standard
$113.57 Buy

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,369.19 Buy
VAR
ASTM
[+] $10,801.41 Buy
VAR
ASTM
[+] $5,812.65 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

GROUPS