FORMAT
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-A249 2010ASTM A249 / A249M - 10aStandard Specification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser TubesActive Standard ASTM A249 / A249M | Developed by Subcommittee: A01.10 Book of Standards Volume: 01.01 ASTM A249 / A249MAbstract This guide specifies standard specification for nominal-wall-thickness welded tubes and heavily cold worked welded tubes made from the austenitic steels with various grades intended for such use as a boiler, superheater, heat exchanger, or condenser tubes. Heat and product analysis shall conform to the requirements as to chemical composition for carbon, manganese, phosphorous, sulfur, silicon, chromium, nickel, molybdenum, nitrogen, copper, and others. All materials shall be furnished in the heat-treated condition in accordance with the required solution temperature and quenching method. When the final heat treatment is in a continuous furnace, the number of tubes of the same size and from the same heat in a lot shall be determined from the prescribed size of the tubes. The material shall conform to the prescribed tensile and hardness properties such as tensile strength, yield strength, elongation, and Rockwell hardness number. The steel shall undergo mechanical tests such as tension test, flattening test, flange test, reverse-bend test, hardness test, and hydrostatic or nondestructive electric test. The grain size of different grades of steel shall be determined in accordance with the test methods. This abstract is a brief summary of the referenced standard. It is informational only and not an official part of the standard; the full text of the standard itself must be referred to for its use and application. ASTM does not give any warranty express or implied or make any representation that the contents of this abstract are accurate, complete or up to date. 1. Scope 1.1 This specification covers nominal-wall-thickness welded tubes and heavily cold worked welded tubes made from the austenitic steels listed in Table 1, with various grades intended for such use as boiler, superheater, heat exchanger, or condenser tubes. 1.2 Grades TP304H, TP309H, TP309HCb, TP310H, TP310HCb, TP316H, TP321H, TP347H, and TP348H are modifications of Grades TP304, TP309S, TP309Cb, TP310S, TP310Cb, TP316, TP321, TP347, and TP348, and are intended for high-temperature service such as for superheaters and reheaters. 1.3 The tubing sizes and thicknesses usually furnished to this specification are 1 / 8 in. [3.2 mm] in inside diameter to 12 in. [304.8 mm] in outside diameter and 0.015 to 0.320 in. [0.4 to 8.1 mm], inclusive, in wall thickness. Tubing having other dimensions may be furnished, provided such tubes comply with all other requirements of this specification. 1.4 Mechanical property requirements do not apply to tubing smaller than 1 / 8 in. [3.2 mm] in inside diameter or 0.015 in. [0.4 mm] in thickness. 1.5 Optional supplementary requirements are provided and, when one or more of these are desired, each shall be so stated in the order. 1.6 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the M designation of this specification is specified in the order. 1.7 The following safety hazards caveat pertains only to the test method described in the Supplementary Requirements of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. A specific warning statement is given in Supplementary Requirement S7, Note S7.1.
ASTM Standards A262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels A480/A480M Specification for General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip A1016/A1016M Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes E112 Test Methods for Determining Average Grain Size E213 Practice for Ultrasonic Testing of Metal Pipe and Tubing E273 Practice for Ultrasonic Testing of the Weld Zone of Welded Pipe and Tubing E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS) ASME Boiler and Pressure Vessel Code SectionVIII Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990, http://www.asme.org.Other Standard SAEJ1086 Practice for Numbering Metals and Alloys (UNS) Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001, http://www.sae.org.Keywords austenitic stainless steel; boiler tubes; condenser tube; heat exchanger tube; high temperature applications; steel tube; superheater tubes; temperature service applications, high; welded steel tube and heavily cold worked (HCW) tubes; Austenitic stainless steel tube--specifications; Boiler/superheater tubes--specifications; Condenser and heat exchanger systems--steel; High-temperature service applications--steel tube; Superheater tubes--specifications; Welded steel tube--specifications; ICS Code ICS Number Code 23.040.10 (Iron and steel pipes) DOI: 10.1520/A0249_A0249M-10A ASTM International is a member of CrossRef. ASTM A249 / A249MThis book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|