Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(573)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(541)
(117)
(33)
(20)
(19)
(93277)
(3)
(17)
(1)
(351)
(300)
(6217)
(240)
(16)
(5)
(1621)
(16)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E1847-96(2013) Standard Practice for Statistical Analysis of Toxicity Tests Conducted Under ASTM Guidelines
    Edition: 2013
    $93.60
    Unlimited Users per year

Description of ASTM-E1847 2013

ASTM E1847 - 96(2013)

Standard Practice for Statistical Analysis of Toxicity Tests Conducted Under ASTM Guidelines

Active Standard ASTM E1847 | Developed by Subcommittee: E50.47

Book of Standards Volume: 11.06




ASTM E1847

Significance and Use

4.1 The use of statistical analysis will enable the investigator to make better, more informed decisions when using the information derived from the analyses.

4.1.1 The goals when performing statistical analyses, are to summarize, display, quantify, and provide objective measures for assessing the relationships and anomalies in data. Statistical analyses also involve fitting a model to the data and making inferences from the model. The type of data dictates the type of model to be used. Statistical analysis provides the means to test differences between control and treatment groups (one form of hypothesis testing), as well as the means to describe the relationship between the level of treatment and the measured responses (concentration effect curves), or to quantify the degree of uncertainty in the end-point estimates derived from the data.

4.1.2 The goals of this practice are to identify and describe commonly used statistical procedures for toxicity tests. Fig. 1 , Section 6 , following statistical methods (Section 5 ), presents a flow chart and some recommended analysis paths, with references. From this guideline, it is recommended that each investigator develop a statistical analysis protocol specific to his test results. The flow chart, along with the rest of this guideline, may provide both useful direction, and service as a quality assurance tool, to help ensure that important steps in the analysis are not overlooked.


FIG. 1 ?Flow Chart for Practice for Statistical Analysis

FIG. 1 ?Flow Chart for Practice for Statistical Analysis (continued)

FIG. 1 ?Flow Chart for Practice for Statistical Analysis (continued)

FIG. 1 ?Flow Chart for Practice for Statistical Analysis (continued)

1. Scope

1.1 This practice covers guidance for the statistical analysis of laboratory data on the toxicity of chemicals or mixtures of chemicals to aquatic or terrestrial plants and animals. This practice applies only to the analysis of the data, after the test has been completed. All design concerns, such as the statement of the null hypothesis and its alternative, the choice of alpha and beta risks, the identification of experimental units, possible pseudo replication, randomization techniques, and the execution of the test are beyond the scope of this practice. This practice is not a textbook, nor does it replace consultation with a statistician. It assumes that the investigator recognizes the structure of his experimental design, has identified the experimental units that were used, and understands how the test was conducted. Given this information, the proper statistical analyses can be determined for the data.

1.1.1 Recognizing that statistics is a profession in which research continues in order to improve methods for performing the analysis of scientific data, the use of statistical methods other than those described in this practice is acceptable as long as they are properly documented and scientifically defensible. Additional annexes may be developed in the future to reflect comments and needs identified by users, such as more detailed discussion of probit and logistic regression models, or statistical methods for dose response and risk assessment.

1.2 The sections of this guide appear as follows:

Title

Section

Referenced Documents

2

Terminology

3

Significance and Use

4

Statistical Methods

5

Flow Chart

6

Flow Chart Comments

7

Keywords

8

References


1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

E178 Practice for Dealing With Outlying Observations

E456 Terminology Relating to Quality and Statistics

E1241 Guide for Conducting Early Life-Stage Toxicity Tests with Fishes

E1325 Terminology Relating to Design of Experiments

IEEE/ASTM SI 10 American National Standard for Use of the International System of Units (SI): The Modern Metric System


Keywords

ANOVA; categorical data analysis; flow chart; means comparisons; plots; probit analysis; regression; reliability analysis; statistical analysis; trend analysis ;


ICS Code

ICS Number Code 03.120.30 (Application of statistical methods); 07.100.10 (Medical microbiology)


DOI: 10.1520/E1847-96R13

ASTM International is a member of CrossRef.

ASTM E1847

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $5,933.17 Buy
VAR
ASTM
[+] $883.58 Buy
VAR
ASTM
[+] $1,056.87 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X